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ABSTRACT 

This work presents new variable transformations for accurate evaluation of the nearly 

singular integrals arising in the 3D boundary element method (BEM). The proposed 

method is an extension of the variable transformation method in Ref. [4] for 2D BEM 

to 3D BEM. In this paper, first a new system denoted as ( , )   is introduced 

compared with the polar coordinate system. So the original transformations in Ref. [4] 

can be developed to 3D in ( , )   or polar coordinate system. Then, the new 

transformation is performed by four steps in case the source point coincides with the 

projection point or five steps otherwise. For each step, a new transformation is 

proposed based on the approximate distance function, so that all steps can finally be 

unified into a uniform formation. To perform integration on irregular elements, an 

adaptive integration scheme combined with the transformations is applied. Numerical 

examples compared with other methods are presented. The results demonstrate that 

our method is accurate and effective. 

KEYWORDS: nearly singular integrals, numerical integration, boundary element 

method, variable transformations. 
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1. Introduction 

Near singularities are involved in many boundary element method (BEM) analyses 

of engineering problems, such as problems on thin shell-like structures [1-3], the 

crack problems [5], the contact problems [6], as well as the sensitivity problems [7]. 

Accurate and efficient evaluation of nearly singular integrals with various kernel 

functions of the type O(1/ r ) is crucial for successful implementation of the 

boundary type numerical methods based on boundary integral equations (BIEs), such 

as the boundary element method (BEM), the boundary face method (BFM) [8-13]. A 

near singularity arises when a source point is close to but not on the integration 

elements. Although these integrals are really regular in nature, they can’t be evaluated 

accurately by the standard Gaussian quadrature. This is the so-called boundary layer 

effect in BEM and BFM. The boundary layer effect comes from the properties of 

fundamental solutions and their derivatives. The denominator r, the distance between 

the source and the field point, is close to zero but not zero. The difficulty encountered 

in the numerical evaluation mainly results from the fact that the integrands of nearly 

singular integrals vary drastically with the distance.  

Effective computation of nearly singular integrals has received intensive attention in 

recent years. Various numerical techniques have been developed to remove the near 

singularities, such as rigid body displacement solutions [14], global regularization 

[15-18], semi-analytical or analytical integral formulas [19, 20], the sinh 

transformation [21-23], polynomial transformation [24], adaptive subdivision method 

[8, 9, 25, 26], distance transformation technique [11, 27-30], the 1/5
1L transformation 

[31] , the PART method [31-33] and the variable transformations [4]. Most of them 

benefit from the strategies for computing singular integrals. Among these techniques, 

variable transformations technique seems to be a more promising method for dealing 

with different orders of nearly singular integrals. However, the transformations are 

only limited to 2D boundary element. In this paper, we develop the variable 

transformations technique to evaluate the nearly singular integrals on parametric 
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surface used in BFM [8-13]. In our method, a new local coordinate system [8, 11] 

described by ( , )   is introduced. This system is very similar to the polar system, 

but its implementation is simpler as the polar system and also performs efficiently. So, 

the transformations in Ref. [4] can be extended to 3D in ( , )  or polar coordinates. 

We first take four steps to analyze the transformation when the distance between the 

source point and the projection point equals zero, and five steps otherwise. In each 

step, the mathematical derivation is presented in detail. Then these steps are unified 

into a uniform formation, in which the near weak and strong singularity can be 

removed. To perform integration on irregular elements, the element subdivision 

technique is employed in combination with our method. Although the element 

subdivision technique is used, the computational cost is reduced dramatically 

compared with the conventional element subdivision techniques [8, 9, 25, 26]. Our 

method has been successfully applied in the evaluation of nearly singular integrals on 

planar elements and curved surface elements. Numerical examples are presented for 

different cases regarding positions of the projection point and values of the minimum 

distance. Results demonstrate that our method is accurate and effective. 

This paper is organized as follows. The general form of nearly singular integrals is 

described in Section 2. Section 3 briefly reviews the distance function in polar 

coordinate system. In Section 4, the distance function is constructed in ( , )   

coordinate system with new form. In Section 5, the transformations for nearly singular 

integrals are presented in detail. In section 6, element subdivision is introduced. 

Numerical examples are given in Section 7. The paper ends with conclusions in 

Section 8. 

2. General descriptions 

In this paper, we will deal with the computation of integrals of the following form 

               2

( , ) , 1,2,3lS
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Where f is a smooth function, x and y represent the field point and the source point in 

BEM, with components xi and yi, (i=1, 2, 3), respectively. S represents the boundary 

element. We assume that the source point is close to S, but not on it. 

For simplicity, let us take the three-dimensional potential problems as an example. 

The two boundary integral equations are given by 

* *( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )c u q u d u q d
 

    y y x x y x x x y x                      (2) 

* *( ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( )k k kc u q u d u q d
 

    y y x x y x x x y x                      (3) 

where c is a coefficient depending on the smoothes of the boundary at the source point 

y [31]. *( , )u x y  is the fundamental solution for 3D problem expressed as:                             

* 1 1( , )
4 ( , )
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r

x y
x y
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3
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*
* ( , )( , )k

k

qq
x





x yx y                                  (5) 

Where n is the unit outward direction to the boundary  , with components ni, (i=1, 2, 

3). Eq. (2) and Eq. (3) are discretized on the boundary   by boundary elements 

( 1 )e e N    defined by interpolation functions. The integral kernels of Eq. (2) and 

(3) become nearly singular when the distance between the source point and 

integration element is very small compared to the size of integration element. And 

integrals in Eq. (2) and Eq. (3) become near singularity with different levels 

considering   in Eq. (1), namely, *u  with near weak singularity, *
ku  and *q  

with near strong singularity, and *
kq  with near hyper singularity. In this paper, we 

develop new variable transformations method for various boundary integrals with 

near singularities of different levels. The new method is detailed in following sections. 

For the sake of clarity and brevity, we take following integrals in a general form to 

discuss: 

                        (1 )l

S
I O r dS                            (6) 
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3. Review definition of the distance polar coordinate system 

In this section, we will briefly review the distance function [11, 27-30]. 

As shown in Fig.1, employing the first-order Taylor expansion in the neighborhood 

of the projection point xc, we have 

1 1 1 1
2 2 2 2

2
1 1 2 2 0 1 2

1 2

2
0 1 2

( ) ( ) ( , ) ( )

= ( ) ( , ) ( )

c c
k k k k k k

k k
t c t c k
t c t c

k k

x y x x x y

x xt c t c r n c c O
t t

A r n c c O



  

 
 

    

 
     
 

 

            (7) 

where 1 2( , )c c  are the coordinates of the projection point in a local system 1 2( , )t t ,   

2 2
1 1 2 2( ) ( )t c t c      and 0

cr  x y  which is the minimum distance from the 

source point to the element in most cases. r0 is equal to zero when y is located on the 

tangential plane through xc. nk (k=1, 2, 3) represents the component of the unit 

outward direction to the surface boundary and 

             
1 1 1 1
2 2 2 21 2

( ) cos sink k
k t c t c

t c t c

x xA
t t

   
 

 
 
 

                       (8) 

So, we can get the distance function 

           2 2 2 2 3
0( )( ) ( ) ( )k k k k kr x y x y A r O                         (9a) 

           2 2 2 3
0( ) ( )kr A r O                                     (9b) 

So, using Eq. (9a) and Eq. (9b), Eq. (1) can be written as                                                       

           
1 2

1

( )

2 2 2
( )

( , ) ( , )=
( ( ))

m

m

l l
m

f gI d d d
r

  

  

 
 

  




 

  
x y                (10) 

where 0( )
( )
r

A
 


 , ( ) ( ) ( )k kA A A   , and ( , )g    is a smooth function. 

4. Construct new definition of the distance function in ( , )   coordinate system 

To construct the new distance function, firstly, a quadrilateral element in the local 

parameter (t1, t2) space which the projection point is located in the element is 
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considered. As shown in Fig. 2(a) and Fig. 2(b), the element is divided into four 

triangles in the parameter space. For each triangle, the following mapping [8, 11] is 

used 

                        
1

1 1 1 1
1

2 2 2 2

( )
( )

a

a

t c t c
t c t c




   


  
                          (11) 

                      
2

1 1 1 1
2

2 2 2 2

( )
( )

b

b

t c t c
t c t c




   


  
                          (12) 

                      1 1 1 1

2 2 2 2

( )
( )




   


  

a b a

a b a

t t t t
t t t t

 , [0,1]                   (13) 

Combining Eqs. (11)-(13), the expression, which is different to obtain the coordinates  

t1 and t2 compared with the polar coordinate system above, can be written as 

                    
1 2 1

1 1 1 1 1 1
1 2 1

2 2 2 2 2 2

( ) ( )
( ) ( )

t c t c t t
t c t c t t

 
 

     


    
                   (14) 

As shown in Fig. 2(c), the triangle is mapped onto a square [0, 1]×[0, 1] of unit 

side-length in ( , )   coordinate system using the transformation (14). Both   and 

  are constrained to interval [0, 1] in each triangle and there is no need to compute 

their spans. On the contrary, the spans for   and   in the polar system should be 

evaluated. The Jacobian for the transformation from (t1, t2) system to ( , )   system 

is S  , and 

                    1 2 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2 1 2S t t t c c t t t c t t c                   (15) 

So, using Eqs. (11) - (14) 

1 1 1 1
2 2 2 2

2
1 1 1 2 0 1 2

1 2

2
0 1 2

( ) ( ) ( , ) ( )

= ( ) ( , ) ( )

c c
k k k k k k

k k
t c t c k
t c t c

k k

x y x x x y

x xt c t c r n c c O
t t

A r n c c O



  

 
 

    

 
     
 

 

         (16) 

in which 
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1 1 1 1
2 2 2 2

1 0 2 1 1 0 2 1
1 1 1 1 2 2 2 2

1 2

( ) ( ) ( ) ( ) ( )k k
k t c t c

t c t c

x xA t t t t t t t t
t t

   
 

               
   (17) 

Using Eqs. (10)-(17), we can easily obtain the distance function in a new form 

        2 2 2 2 3
0( )( ) ( ) ( )k k k k kr x y x y A r O                      (18a) 

        2 2 2 3
0( ) ( )kr A r O                                  (18b) 

So, using Eq. (18a) and Eq. (18b), Eq. (1) can be written as                                                                                       
1 1

2 2 2
0 0

( , ) ( , )=
( ( ))l l

m

f gI d d d
r

   
  

 
  

x y                     (19) 

where 0( )
( )
r

A
 


 , ( ) ( ) ( )k kA A A   , and ( , )g    is a smooth function. 

5. New variable transformations for nearly singular integrals 

In this section, we construct efficient variable transformations to compute nearly 

singular integrals for different cases. Ref. [4] has given variable transformations to 

remove near singularity in 2D BEM, so it is time to extend these efficient 

transformations to 3D BEM. Those transformations are based on the idea that the 

integrands with the rapid variation are smoothed out and their integrals can be 

calculated precisely by the standard Gaussian quadrature. We will construct different 

transformations for the following three cases: (1) r0≠0 and the projection point in the 

element as shown in Fig. 3(a); (2) r0＝0 and the projection point outside the element 

as shown in Fig. 3(b); (3) r0≠0 and the projection point outside the element as shown 

in Fig. 3(c). 

5.1 Case 1: r0≠0 and the projection point in the element 

Nearly singular integrals of this type arise when we computed the thin bodies. As 

shown in Fig. 4, when the source point is located on the bottom surface and the 

integration element is on the top surface, the projection point happens to lie in the 

integration element. 

We will give different transformations considering the two coordinates, namely,   
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( , )   and the polar coordinate system. In order to obtain a reasonable 

transformation for each case, the distance r is approximated by the Taylor expansion 

(9a) and (18a) without considering higher orders term as Eq. (9b) and Eq. (18b). 

However, in actual computation r is still the distance from the source point to the field 

point. We explain how to construct different transformations. The process consists of 

five steps and each step is described briefly below. 

From Eq. (10) and Eq. (19), we can analyze that the near singularity is essentially 

related to the radial variable   and  . So we will construct a more robust and 

efficient transformation for the radial variable   and  . 

First we only consider the radial variable integral which depicts near singularity in 

the Eqs. (10) and (19), as follows 

             
2

1

( )

1 2 2 2
( )

( , )
( ( ))l

gI d
 

 

 


  


                               (20a) 

             
1

2 2 2 2
0

( , )
( ( ))l

gI d  
  


                                (20b) 

When the projection point is in the integration element, Eq. (20a) becomes the 

following form 

                  
2 ( )

1 2 2 2
0

( , )
( ( ))l

gI d
   


  


                         (20c) 

Second we make a stretching transformation for Eq. (20c) and Eq. (20b) respectively 

                          0 1r                                 (21a) 

                          0 1r                                 (21b) 

Substituting Eq. (21a) into Eq. (20c), and Eq. (21b) into Eq. (20b), we have 

                   

2

0

( )

0 1
1 12 2 2

10

( , )
( ( ))

r

l

r gI d

 

 


  


                        (22a) 
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0

1

0 1
2 12 2 2

10

( , )
( ( ))

r

l

r gI d 


  


                          (22b) 

Then we make a translation transformation for Eqs. (22a) and (22b), respectively 

                         2 1 1                                  (23a)                 

                         2 1 1                                  (23b)                                                                             

This step is employed to adjust the lower limit of the integration variable for the 

afterward logarithmic transformation. 

Substituting Eq. (23a) into Eq. (22a), Eq. (23b) into Eq. (22b), results in 

               

2

0

( ) 1

0 2
1 22 2 2

21

( 1, )
(( 1) ( ))

r

l

r gI d

 

 


  






                    (24a) 

              
0

1 1

0 2
2 22 2 2

21

( 1, )
(( 1) ( ))

r

l

r gI d 


  






                           (24b) 

In the four steps, we smooth out the rapid variations of the integrand by the following 

logarithmic transformation 

                     3 2log( )                                  (25a) 

                      3 2log( )                                  (25b) 

Substituting Eqs. (25a)-(25b) into Eqs. (24a)-(24b), Eqs. (24a)-(24b) can be expressed 

as 

   

2

0 3 3

3

( )log( 1)

0
1 32 2 2

0

( 1, )
(( 1) ( ))

r

l

r g e eI d
e

 

 






 






                               (26a) 

   
0 3 3

3

3

1log( )

0
2 2 2 2

0

( 1, )
(( 1) ( ))

r

l

r g e eI de
e

 





 




                                 (26b) 
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Using the good properties of the logarithmic function [27-30, 34, 35], it can easily be 

proved that the transformed integrand has much lower gradient. 

Finally, adjusting the integration interval within [-1, 1] for performing the standard 

Gaussian quadrature directly, we propose the following transformation. 

                       3 1 4 1k k                             (27a) 

where 2
1

0

( )1 log( 1)
2

k
r

 
   

                        3 2 4 2k k                            (27b) 

where 2
0

1 1log( 1)
2

k
r

   

Using the transformations (27a) and (27b), we have 

                 
1 4 1 1 4 1

1 4 1

1 )
1 0

1 42 2 2
1

( 1, )
(( 1) ( ))

k k k k

k k l

k r g e eI d
e

 



 
 

 







                        (28a) 

2 4 2 2 4 2

2 4 2

1
2 0

2 42 2 2
1

( 1, )
(( 1) ( ))

k k k k

k k l

k r g e eI d
e

 






 

 







                    (28b) 

We integrate all the transformations detailed above and can obtain the final 

transformation as 

                          1 1
0 ( 1)k kr e                             (29a) 

                          2 2
0 ( 1)k kr e                             (29b) 

It should be noted that we still use the exact r instead of the approximate r in Eq. (28a) 

and Eq. (28b), and that the nearly singular kernels are not changed into another forms. 

It should be also noted that the two variable transformations are similar to these in 

Refs. [34, 35]. However, the deductions in this paper are very different from those 

given in Refs. [34, 35]. We construct the transformations in a general way based on 

the approximate distance function derived from first-order Taylor expansion. 

Moreover, for the first time, the variable transformations are applied for evaluating 
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nearly singular integrals in 3D BEM. 

5.2 Case 2: r0＝0 and the projection point outside the element 

When r0＝0 and the projection point is outside the element, as shown in Fig. 3(b) 

and Fig. 5. When discontinuous elements or elements that sizes are quite different are 

adopted, nearly singular integrals of this type arise. 

The process of constructing variable transformations is different from that described 

in Section 5.1. We also deduce corresponding transformations for this case and the 

process consisting of four steps is described briefly below. 

First we only consider the radial variable integral which depicts near singularity in 

the Eq. (10), as follows: 

                       
2

1

( )

1
( )

( , )
l

gI d
 

 

 



                             (30) 

Second we make a stretching transformation 

                       1 1( )                                     (31) 

Eq. (31) becomes the following form: 

                       

2

1

( )
( )

1 1
1 1

11

( ) ( , )
( )l

gI d

 
      


                        (32) 

Then we make a logarithmic transformation to smooth out the rapid variations of the 

integrand 

                        2 1log( )                                  (33) 

Using Eq. (34), we have 

                        

2

1 2 2

2

( )log( )
( )

1
1 2

0

( ) ( , )
( )l

e g eI d
e

 
   



                    (34) 

Finally, also adjusting the interval of integration within [-1, 1] for performing the 

standard Gaussian quadrature directly, the following transformation is given. 
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                         2 1( 1)k                                (35) 

where 2
1

1

( )1 log( )
2 ( )

k  
 

  

Substituting Eq. (36) into Eq. (35), we have  

1 1

1

1 ( 1) ( 1)
1 1

1 ( 1)
1

( ) ( , )
( )

k k

k l

k e g eI d
e

 



  


 




                   (36) 

We integrate all steps above and the final transformation is obtained as 

                       1 ( 1)
1( ) ke                                  (37) 

5.3 Case 3: r0≠0 and the projection point outside the element. 

When r0≠0 and the projection point is outside the element, as shown in Fig. 3(c) and 

Fig. 4. When the source point is located on the side surface and the integration 

element is on the top surface, the projection point happens to be located outside the 

integration element. The process of constructing variable transformations is very 

similar to that described in Section 5.2. By applying the same steps as Section 5.2, a 

new transformation can be constructed. 

                 1 4 2
0 ( 1)k kr e                                      (38) 

where 2 1
1

0 0

( ) ( )1 1log( 1) log( 1)
2 2

k
r r

   
    , 2 1

2
0 0

( ) ( )1 1log( 1) log( 1)
2 2

k
r r

   
     

6. Element subdivision 

The element subdivision is indispensible for treating the nearly singular integrals in 

the 3D cases as in Refs. [11, 27, 29]. In this section, we subdivide an integration 

element in a suitable pattern considering both element shape and the position of the 

projection point in the element. Adaptive integration based on element subdivision to 

calculate integrals is employed just as a combination for the new variable 

transformations [4]. The element subdivision technique is very similar to that 

discussed in Ref. [11], but more cases are considered. 
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Note that although the original quadrangle has a fine shape, the four subtriangles 

may have poor shapes depending on the position of xc (the projection point) (see Fig. 

6.(a)). Obtaining triangles of fine shape seems more difficult by direct subdivision for 

irregular initial elements as shown in Fig. 6(a) even xc is located at the element center. 

If the angle denoted by  , Fig. 6(b) – 6(f) between two lines in common with end 

point xc in each triangle is larger by a certain value 2 3  and even tends to  , 

numerical results will become less accurate.  

To solve the troubles described above, we have developed an adaptive subdivision 

for an arbitrary quadrilateral element. The original element is divided into several 

triangles and additional quadrangles, which is different from these as shown in Fig. 6 

(a1)-(f1). The adaptive subdivision consists of three main steps described briefly as 

follows: 

First, compute the distances in the real-world-coordinate system form xc to each edge 

of the element and obtain the minimum distance d. 

Then, based on d, we construct a box defined in parametric system, but with square 

shape in the real- world -coordinate system as can as possible, to well cover xc. 

Finally, triangles are constructed from the box and additional quadrangles are created 

outside the box in the element. 

Applying the strategy above, adaptive subdivisions for the elements in Fig. 6 with 

suitable patterns are shown in Fig. 6(a1)-(f1). For each triangle, the nearly singular 

integrals are calculated by the scheme discussed in Section 5. However, for each 

quadrangle, nearly singular integrals will arise but not severe, which can be calculated 

by adaptive integration scheme based on the element subdivision technique discussed 

in Refs. [8, 9].  It should be noted that, although the element subdivision is adopted, 

the computational cost is reduced dramatically compared with the conventional 

subdivision technique to compute nearly singular integrals on the whole element. This 

is because that the integrals on the local region of the element, which is more close to 

the source point, are calculated by the new variable transformations technique. 
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However, there is still another problem that how to combine new variable 

transformations with element subdivision technique when the projection point is 

located outside the integration element. Only a few literatures refer to nearly singular 

integrals of this type, such as the tangential transformation in Ref. [30].  In our 

implementation, when the projection point is located outside the integration element, 

the element subdivision technique is discussed as follows. As shown in Fig. 7(a), the 

element is subdivided into two triangles (region 1 and region 3) and a quadrangle 

(region 2) around the projection point. For the triangles and the quadrangle, 

transformation (37) or (46) is employed. However, the results obtained by this 

subdivision are not quite accurate. So, another subdivision is also employed in our 

method, as shown in Fig. 7(b). The point xd which is the most close point to the 

source point in the element is introduced. We subdivide the element in three triangles 

around xd instead of the projection point. And the transformations (29a) and (29b) are 

employed for nearly singular integrals in each triangle. The results obtained by this 

subdivision are very accurate. In Example 2, we compare the results of the two 

subdivisions and also try to find the causes. 

7. Numerical examples 

In this section, we will give a number of examples to investigate the effectiveness 

of different variable transformations. For the purpose of error estimation, the relative 

error is defined as follows: 

                 nume exact

exact

I Ierror
I


                                (39) 

Where the subscripts nume and exact refer to numerical solutions and exact solutions 

respectively. In this paper, the exact solutions are obtained by adaptive element 

subdivisions techniques in Refs. [8, 9, 25, 26], and a large number of integration 

points are used. While in our method, we use 10×10 Gaussian points in all cases for 

the convenience of comparison. 

Example 1:     
1 1

2 2 21 1
0 0

( , )
( ) ( )

i s t dsdt
s s t t c 



   
                           (40) 
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In first example, nearly singular integrals of Eq. (40) type [37] are considered. Where 

( , )i s t  is a polynomial function, and s0, t0 [ 1,1]  , c (0,1) . ( , )i s t  is a quadratic 

basis function. For example, 2 2
5 ( , ) (1 )(1 )s t s t    , 9 ( , ) (1+ ) (1 ) 4s t s s t t   . The 

relative errors listed in Table 1, compared with the sinh method [21, 22], rad-ang 

methods [37] and Scuderi’s method [36]. 
Remark 1: From Table 1, it can be noted that when c>0.01, the sinh method produces 

superior results to our method. However, when c becomes smaller, the efficiency of 

the sinh method decreases, and the efficiency of our method and Scuderi’s method 

remains nearly constant. Compared with the rad-ang method and Scuderi’s method, in 

most cases, better results are obtained by our method. Moreover, the proposed method 

is effective in both coordinate systems. 

Example 2:  a regular planar rectangular boundary element 

This example considers nearly singular integrals on a planar rectangular boundary 

element with the node coordinates of (0,0,0), (1,0,0), (1,1,0), (0,1,0). Relative errors 

of various integrals are listed in Table 2 and Table 3. In Table 2 and Table 3, xc is the 

projection point and xd is the most close point to the source point in the element.  

Remark 2: From Table 2 and Table 3, it can be found that when the projection point 

is located outside the integration element, the element subdivision around the nearest 

point to the source point compared with the transformation (29a) and (29b) are 

effective. The relative errors are very small with the order less than 10-7 for integrals 

with kernel u*. And for integrals with kernel 1/r2, the relative errors increase up to 

10-5. However, the element subdivision around the projection point compared with the 

transformation (37) or (38) is not so effective. The causes may be explained as 

follows: 

1. The shapes of sub-triangles or sub-quadrangles are not quite fine, as shown in Fig. 

7(a). The shape of the sub-quadrangle (region 2) in Fig. 7(a) is poor. In other words, 

in that sub-quadrangle, the bottom edge is very longer than the top edge. 

2. As shown in Fig. 7(a), the polar coordinate transformation is used at the 

projection point xc. In the triangle (region 1), the lower and upper limits of the integral 

(Eq. (10)) 1 1 cosd   and 2 4 sind   . In the quadrangle (region 2), they are 

1 1 cosd   and 2 3 cosd  . In the triangle (region 3), they are 1 1 cosd   

and 2 2 sind  . The low limit becomes smaller when the projection point 
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approaches the element. The coefficient 1 2 10.5log( ( ) ( ))k     in transformation 

(37) may be very large, thus the results are affected. 

3. The distributions of the integration points are shown in Fig. (8). In Fig. (8a), it can 

be seen that the inner integration points are crowded together around the projection 

point and the integration points of the top row are scattered and nearly overlap with 

each other . However, in Fig. (8b), the integration points concentrated around the 

nearest point are well arranged as in Fig. (8c), so better results can be obtained by the 

element subdivision around the nearest point using Eq. (29a) or Eq. (29b). 

Example 3: an irregular planar rectangular boundary element 

The second example considers nearly singular integrals on an irregular planar 

rectangular boundary element with the node coordinates of (0,0,0), (1,0,0) , (4,1,0), 

(0,4,0). The local coordinates of the projection point are set at (0.5, 0.5). Relative 

errors of various integrals are listed in Table 4. The symbol NDivd denotes the results 

obtained by the variable transformation only, while Divd denotes the results obtained 

by the variable transformation in combination with the element subdivisions. 

Remark 3: From Table 4, it can be found that the new transformations technique in 

combination with element subdivisions is a very efficient scheme to calculate nearly 

singular integrals over an irregular quadrilateral boundary element. Compared with 

the conventional element subdivision techniques, the cost of computation is reduced 

dramatically, and a large number of integration points concentrated near the projection 

point are avoided. It also can be found that with the combined method the relative 

error of the results of various integrals is less than 10-5, and that the results keep 

steady and accurate even the relative distance at 10-5. And in most cases, we can get 

better results with the transformation (29b). The cause may be explained as follows: 

as shown in Fig. (9a) and (9b), the integration point is more concentrated near the 

projection point and integration points of the innermost layer nearly coincide with the 

projection point. 

Example 4: a spherical surface element 

This example considers nearly singular integrals on a curved surface element. The 

curved surface element is presented in parametric form by a local spherical polar 

system ( , )  , and this kind element is named as spherical surface element here which 

is used in usually BFM [8, 9]. The element’s geometric parameters are given as 

follows: [0, 4]  , [ 4, 2]   and the sphere radius (r) is set to 0.1, with 
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center (0,0,0) . The projection point of the given source point is located on the center 

of the element. In this example, we consider the high order shape function. The shape 

function is expressed as follows 

                 1 2 1 2( 1)(1 )(1 ) / 4t t t t                              (41) 

The ratio is the ratio of the distance between the source point and the projection point 

to the sphere radius. Various integrals are computed by Eq. (29a) and Eq. (29b) in two 

local systems. The relative errors are listed in Table 5. 

Remark 4: Unlike the previous examples, the shape function is also considered in this 

special example. From Table 5, it can be found the transformation in two local 

systems is effective. The relative errors are very small with the order less than 10-5 for 

integrals with kernel u*. And for integrals with kernel q* and *
1u , the relative errors 

increase up to 10-4. The results denote that our method can be directly used for the 

curved surface element with high order shape functions in BEM. 

7. Conclusions 

Several new variable transformations are presented in this paper for accurate 

computation of nearly singular integrals arising in 3D BEM. It is an extension of the 

author’s previous work [4] for 2D BEM. 

The new variable transformations are based on the distance function which is 

constructed in two local systems described by ( , ） and ( , ）. In each local 

system, Taylor expansion is applied. Then the new transformations are derived for 

different cases in terms of the minimum distance and the positions of the projection 

point. These transformations are finally unified into a uniform formulation, which can 

deal with the integrals with near weak or strong singularity directly. For irregular 

elements, these new transformations combined with adaptive element subdivision 

considering both the element shape and the position of the projection point are applied 

to compute the nearly singular integrals. So, better results can be obtained. Moreover, 

the combined method reduces the cost of the convention element subdivision 

techniques. And the overall integration points are also reduced. 

A number of numerical examples are presented on planar surface elements and curved 

surface elements. Results demonstrate that our method is accurate and effective.  

1. For nearly hypersingular integrals, the present method is not so effective. Using the 

Ma’s method [27, 29], it is easy to extend our method for nearly hypersingular 

integrals. 
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2. The accuracy of the present method is sensitive to the position of the projection 

point. However, as we know, it is difficult to find the ideal projection point in many 

cases, so how to reduce the sensitiveness on the position of the projection point is 

important for us to perform the method. 

Works on these problems are undergoing and we will report them in following 

papers. 
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Fig.1. The minimum distance r0, from the source point y to the 3D curved surface element 

Fig. 2. Nearly singular integration on an element (a) A quadrilateral element in local 
parametric system (t1, t2) when the projection point is in the element (b) Subdivisions 

of the quadrilateral element (c) A triangle is mapped into a square in ( , )   

coordinate system 
Fig. 3. Three cases considering r0 and the position of xc (a) r0≠0 and xc is in the 
element (b) r0＝0 and the projection point is outside the element (c) r0≠0 and xc is 
outside the element 
Fig .4.  A thin plate. 
Fig. 5. Two types of the element: (a) Discontinuous elements (b) Element sizes quite 
are different 
Fig. 6. Subdivisions of quadrilateral element depending on the position of the 
projection point xc 
Fig. 7. Subdivisions of quadrilateral element when the projection point outside the 
integration element 
Fig. 8. Distributions of the integration points  
(a) The integration points of the element subdivision around the projection point 
using Eq. (37) (The number is 300). 
(b) The integration points of the element subdivision around the nearest point using 
Eq. (29a) (The number is 300). 
(c) The integration points when the projection point is in the center of the element 
(The number is 400).  
Fig. 9. Distributions of the integration points of three methods  
(a) The integration points of transformation (29a) combined with the element 
subdivision (The number is 688). 
(b) The integration points of transformation (29b) combined with the element 
subdivision (The number is 688). 
(c) The integration points of adaptive element subdivision (The number is 2200).  
 
Table 1 Relative errors of our method using Eq. (29a) and Eq. (29b) compared with 
the other methods 
Table 2 Relative errors of various integrals when r0＝0 
Table 3 Relative errors of various integrals when r0≠0 
Table 4 Relative errors of various integrals using Eq. (29a) and Eq. (29b) in 
combination with element subdivisions. 
Table 5 Relative errors of various integrals on the spherical surface element with Eq. 
(29a) and Eq. (29b). 
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Fig. 2. Nearly singular integration on an element (a) A quadrilateral element in local 

parametric system (t1, t2) when the projection point is in the element (b) Subdivisions 

of the quadrilateral element (c) A triangle is mapped into a square in ( , )   

coordinate system 
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Fig. 3. Three cases considering r0 and the position of xc (a) r0≠0 and xc is in the 

element (b) r0＝0 and the projection point is outside the element (c) r0≠0 and xc is 

outside the element 
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Fig .4.  A thin plate. 
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Fig. 5. Two types of the element: (a) Discontinuous elements (b) Element sizes quite 

are different 
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Fig. 6. Subdivisions of quadrilateral element depending on the position of the 

projection point 
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Fig. 7. Subdivisions of quadrilateral element when the projection point outside the 

integration element 
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Fig. 8. Distributions of the integration points  

(a) The integration points of the element subdivision around the projection point 

using Eq. (37) (The number is 300). 

(b) The integration points of the element subdivision around the nearest point using 

Eq. (29a) (The number is 300). 

(c) The integration points when the projection point is in the center of the element 

(The number is 400).  

 

 

 

 

 

 

 

 

 



30 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Fig. 9. Distributions of the integration points of three methods  

(a) The integration points of transformation (29a) combined with the element 

subdivision (The number is 688). 

(b) The integration points of transformation (29b) combined with the element 

subdivision (The number is 688). 

(c) The integration points of adaptive element subdivision (The number is 2200).  
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5( , )s t , s0=0.5, t0=0.5  
 

c=0.1 c=0.01 c=0.001 c=0.0001 

Scuderi’s method 1.16E-07 1.14E-07 3.68E-07 1.08E-07 

rad-ang 4.57E-05 8.40E-06 2.87E-07 3.51E-09 

sinh 1.02E-11 4.37E-08 4.77E-06 2.72E-05 

( , )   1.46E-09 3.64E-09 3.67E-09 8.41E-09 

( , )   9.32E-11 1.22E-09 6.80E-09 1.65E-08 

5( , )s t  s0=0.0, t0=0.9 

 
c=0.1 c=0.01 c=0.001 c=0.0001 

Scuderi’s method 1.08E-07 1.00E-07 9.38E-08 1.14E-07 

rad-ang 1.27E-04 2.62E-05 1.24E-06 2.08E-08 

sinh 2.10E-12 1.76E-08 1.44E-06 4.44E-06 

( , )   8.94E-11 3.09E-10 5.78E-10 6.75E-10 

( , )   8.94E-11 7.19E-11 1.50E-09 2.34E-09 

9 ( , )s t  s0=0.9, t0=0.9 

 
c=0.1 c=0.01 c=0.001 c=0.0001 

Scuderi’s method 8.59E-07 3.59E-07 1.20E-07 6.04E-07 

rad-ang 4.89E-04 6.70E-05 2.88E-06 4.38E-08 

sinh 1.75E-13 5.54E-08 6.64E-06 4.56E-05 

( , )   1.47E-11 2.27E-09 3.90E-09 4.01E-09 

( , )   1.42E-10 1.93E-10 1.29E-08 2.18E-08 

Table 1 Relative errors of our method using Eq. (29a) and Eq. (29b) compared 
with the other methods  
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integrals with kernel u*, source point (0.5, -c, 0), xc＝(0.5, -c) 

 

c=0.1 c=0.01 c=0.001 c=0.0001 c=0.00001 

Exact 

solution 
0.14617613077 0.18330947792 0.19028609486 0.19131325733 0.19144895251 

Eq. (37) 5.70E-09 1.70E-04 6.79E-04 2.32E-04 4.21E-04 

 integrals with kernel u*, source point (0.5, -c, 0), xd＝(0.5, 0) 

Eq.(29a) 7.27E-12 9.85E-09 1.64E-08 1.19E-08 1.73E-09 

Eq.(29b) 3.05E-10 1.13E-08 6.94E-09 1.17E-08 8.02E-10 

integrals with kernel 1/r2, source point (0.5, -c, 0), xc＝(0.5, -c) 

 

c=0.1 c=0.01 c=0.001 c=0.0001 c=0.00001 

Exact 

solution 
4.56481792601 11.3647236099 18.5542488609 25.7835995636 33.0169405280 

Eq. (37) 5.57E-10 2.95E-05 3.29E-04 4.34E-04 3.79E-04 

 integrals with kernel u*, source point (0.5, -c, 0), xd
＝(0.5, 0) 

Eq.(29a) 2.22E-09 1.37E-06 1.37e-05 1.29E-06 7.27E-05 

Eq.(29b) 4.29E-09 1.62E-07 6.60E-06 9.45E-06 9.39E-05 

Table 2 Relative errors of various integrals when r0＝0 
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integrals with kernel u*, source point (0.5, -c, c) , xc＝(0.5, -c) 

 

c=0.1 c=0.01 c=0.001 c=0.0001 c=0.00001 

Exact 

solution 
0.1407740622 0.1826286656 0.1902164314 0.1913062749 0.1914482540 

Eq. (38) 6.01E-09 1.71E-04 6.80E-04 2.32E-04 4.21E-05 

 integrals with kernel u*, source point (0.5, -c, c), xd
＝(0.5, 0) 

Eq.(29a) 2.05E-11 1.91E-09 1.08E-08 2.40E-08 2.13E-09 

Eq.(29b) 8.16E-11 1.74E-08 2.10E-08 1.89E-08 7.48E-10 

integrals with kernel 1/r2, source point (0.5, -c, c), xc
＝(0.5, -c) 

 

c=0.1 c=0.01 c=0.001 c=0.0001 c=0.00001 

Exact 

solution 
4.0016235178 10.773731294 17.962921594 25.192268883 32.425609808 

Eq. (38) 1.37E-09 3.11E-05 3.40E-04 4.41E-04 3.73E-04 

 integrals with kernel 1/r2, source point (0.5, -c, c), xd
＝(0.5, 0) 

Eq.(29a) 1.81E-10 6.79E-07 1.35E-05 8.67E-06 1.23E-04 

Eq.(29b) 1.30E-09 4.89E-07 3.37E-06 1.87E-05 7.40E-05 

Table 3 Relative errors of various integrals when r0≠0 
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integrals with kernel u*, source point (0.5, 2, c), xc＝(0.5, 0.5) 
 

c=0.2 c=0.02 c=0.002 c=0.0002 c=0.00002 

Exact solution 0.403729220 0.481057107 0.489927211 0.490825911 0.4909158987 

NDivd 8.76E-05 3.28E-04 3.64E-04 3.68E-04 3.68E-04 
( , )   

Divd 8.05E-06 6.34E-06 6.21E-06 6.17E-06 6.18E-06 

NDivd 6.05E-04 1.80E-03 1.90E-03 1.90E-03 1.90E-03 ( , )   
Divd 4.95E-10 3.12E-09 4.04E-09 3.01E-10 4.60E-09 

integrals with kernel q*, source point (0.5, 2, c), xc＝(0.5, 0.5) 
 

c=0.2 c=0.02 c=0.002 c=0.0002 c=0.00002 

Exact solution 0.374991104 0.486882560 0.498687581 0.499868757 0.4999868757 

NDivd 9.04E-04 2.30E-03 2.10E-03 2.40E-03 4.44E-03 ( , )   
Divd 3.25E-06 2.54E-06 1.62E-05 3.67E-04 6.43E-04 

NDivd 5.10E-03 1.04E-02 1.09E-02 1.08E-02 1.02E-02 ( , )   
Divd 6.06E-09 1.86E-08 2.44E-06 4.44E-05 1.56E-06 

Table 4 Relative errors of various integrals using Eq. (29a) and Eq. (29b) in 

combination with element subdivisions. 
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 integrals with kernel u* and shape function, xc＝(0.5, 0.5) 

ratio 10-1 10-2 10-3 10-4 10-5 

Exact solution 0.0021255434 0.002915264 0.0030119822 0.0030218499 0.0030228387 

( , )   5.47E-10 3.38E-10 3.32E-08 2.65E-07 1.92E-06 

( , )   3.43E-10 3.43E-08 3.32E-08 4.30E-07 2.71E-06 

 integrals with kernel q* and shape function, xc＝(0.5, 0.5) 

ratio            10-1 10-2 10-3 10-4 10-5 

Exact solution 0.0857906725 0.133600754 0.1394520195 0.1400483568 0.1401081030 

( , )   7.77E-10 3.29E-08 5.75E-06 1.20E-04 6.96E-04 

( , )   2.56E-08 7.26E-08 4.79E-06 2.73E-06 1.26E-04 

 integrals with kernel *
1u and shape function, xc＝(0.5, 0.5) 

ratio            10-1 10-2 10-3 10-4 10-5 

Exact solution 0.163903665 0.2145864699 0.2200517795 0.2206016447 0.220656664 

( , )   7.58E-11 3.63E-08 6.22E-06 1.82E-04 9.19E-04 

( , )   2.47E-08 8.97E-08 5.19E-06 1.97E-04 7.55E-04 

 

Table 5 Relative errors of various integrals on the spherical surface element with Eq. 

(29a) and Eq. (29b). 


